Experimental and theoretical study of the neutron dose produced by carbon ion therapy beams

Abstract
High-energy 12C ions offer favourable conditions for the treatment of deep-seated local tumours. Several facilities for the heavy ion therapy are planned or under construction, for example the new clinical ion-therapy unit HIT at the Radiological University Clinics in Heidelberg. In order to improve existing treatment planning models, it is essential to evaluate the secondary fragment production and to include these contributions to the therapy dose with higher accuracy. Secondary neutrons are most abundantly produced in the reactions between 12C beams and tissues. The dose contribution to tissues by a neutron is fairly small compared with the projectile and the other charged fragments due to no ionisation and the small reaction cross-sections; however, it distributes in a considerably wider region beyond the bragg-peak because of the strong penetrability. Systematic data on energy spectra and doses of secondary neutrons produced by 12C beams using water targets of different thicknesses for various detection angles have therefore been measured in this study at GSI Darmstadt.