When autophagy meets viruses: a double-edged sword with functions in defense and offense

Abstract
Autophagy is a ubiquitous catabolic process that ensures organism’s well-being by sequestering a wide array of undesired intracellular constituents into double-membrane vesicles termed autophagosomes for lysosomal degradation. Interest in autophagy research has recently gained momentum as it is increasingly being recognized to play fundamental roles in diverse aspects of human pathophysiology including virus infection and its subsequent complications. This review discusses recent advances in autophagy studies with respect to virus infection and pathogenesis. A growing body of evidence suggests that the autophagy pathway and/or autophagy genes play pleiotropic functions in the host’s intrinsic, innate, and adaptive immune response against viruses. However, some viruses have evolved to encode virulence factors that evade or counteract the execution of autophagy. Furthermore, certain viruses are equipped to enhance autophagy or exploit the autophagy machinery for their replication and pathogenesis. A comprehensive understanding of the roles of autophagy pathway and autophagy genes during viral infection may enable the discovery of novel antiviral drug targets.