Construction, Analysis, and β-Glucanase Screening of a Bacterial Artificial Chromosome Library from the Large-Bowel Microbiota of Mice

Abstract
A metagenomic (community genomic) library consisting of 5,760 bacterial artificial chromosome clones was prepared in Escherichia coli DH10B from DNA extracted from the large-bowel microbiota of BALB/c mice. DNA inserts detected in 61 randomly chosen clones averaged 55 kbp (range, 8 to 150 kbp) in size. A functional screen of the library forβ -glucanase activity was conducted using lichenin agar plates and Congo red solution. Three clones with β-glucanase activity were detected. The inserts of these three clones were sequenced and annotated. Open reading frames (ORF) that encoded putative proteins with identity to glucanolytic enzymes (lichenases and laminarinases) were detected by reference to databases. Other putative genes were detected, some of which might have a role in environmental sensing, nutrient acquisition, or coaggregation. The insert DNA from two clones probably originated from uncultivated bacteria because the ORF had low sequence identity with database entries, but the genes associated with the remaining clone resembled sequences reported in Bacteroides species.