Abstract
The mechanisms for neurodegeneration in amyotrophic lateral sclerosis (ALS) are not understood. We found that motor neuron degeneration in ALS structurally resembles apoptosis. The progression of neuronal death is divisible into 3 sequential stages: chromatolysis, somatodendritic attrition, and apoptosis. In ALS spinal cord anterior horn and motor cortex, DNA fragmentation is detectable in situ and in gels and is internucleosomal, occurring in the presence of DNA fragmentation factor-45/40 activation and increased caspase-3 activity. By immunoblotting, changes occur in the subcellular distribution of cell death proteins that would promote apoptosis. In selectively vulnerable CNS regions in ALS compared with controls, the proapoptotic proteins Bax and Bak are elevated in the mitochondrial-enriched membrane compartment, but are reduced or unchanged in the cytosol. In contrast, the antiapoptotic protein Bcl-2 is decreased in the mitochondrial-enriched membrane compartment of vulnerable regions in ALS, but is increased in the cytosol, whereas Bcl-xL levels are unchanged in both subcellular compartments. Coimmunoprecipitation experiments showed that Bax-Bax interactions are greater in the mitochondrial-enriched membrane compartment of ALS motor cortex compared with controls, whereas Bax-Bcl-2 interactions are lower in the membrane compartment of ALS motor cortex compared with controls. We conclude that a PCD mechanism, involving cytosol-to-membrane and membrane-to-cytosol redistribution of cell death proteins and caspase-3 activation, participates in the pathogenesis of ALS.