Summary of New Insight into Electron Transport in Metals

Abstract
This paper gives a summary of a new insight into basic electron transport characteristics in crystalline elemental metals. The general expressions based on the Fermi-Dirac distribution of the effective density of the randomly moving electrons, their diffusion coefficient, drift mobility, and other characteristics, including the Einstein relation between diffusion coefficient and drift mobility, are presented. It is shown that the creation of the randomly moving electrons due to lattice atom vibrations produces the same number of electronic defects, which cause scattering of the randomly moving electrons and related transport characteristics.