Tactile stimulation during artificial rearing influences adult function and morphology in a sexually dimorphic neuromuscular system

Abstract
Maternal licking of rat pups affects the development of the spinal nucleus of the bulbocavernosus (SNB), a sexually dimorphic motor nucleus that controls penile reflexes involved with copulation. Maternal licking influences SNB motoneurons, with reductions in licking producing decreased SNB number, size, and dendritic length in adulthood. Reduced maternal licking also produces deficits in adult male copulatory behavior. In this experiment, we used an artificial rearing paradigm to assess the potential role of tactile stimulation in mediating the effects of maternal licking on the SNB neuromuscular system. During artificial rearing, pups were stroked with a paintbrush to mimic maternal licking, receiving low, medium, or high levels of daily stimulation. In adulthood, ex copula penile reflex behavior was tested and the morphology of SNB motoneurons assessed. SNB motoneurons were retrogradely labeled with cholera toxin‐conjugated HRP and dendritic arbor was reconstructed in three dimensions. Animals that received low levels of stimulation showed deficits in penile reflexes relative to maternally reared controls, including a longer latency to erection, fewer cup erections, and fewer erection clusters. SNB dendritic morphology was also shaped by stimulation condition, with animals that received low or medium levels of stimulation showing an average 27% reduction in dendritic length. In addition, several reflex behaviors were significantly correlated with dendritic length, including latency to first erection, percent of cup erections, and number of erection clusters. These results suggest that tactile stimulation provided by maternal licking mediates some of the effects of maternal care on the development of male copulatory behavior. © 2008 Wiley Periodicals, Inc. Develop Neurobiol 2008