Physics of climate

Abstract
A review of our present understanding of the global climate system, consisting of the atmosphere, hydrosphere, cryosphere, lithosphere, and biosphere, and their complex interactions and feedbacks is given from the point of view of a physicist. This understanding is based both on real observations and on the results from numerical simulations. The main emphasis in this review is on the atmosphere and oceans. First, balance equations describing the large-scale climate and its evolution in time are derived from the basic thermohydrodynamic laws of classical physics. The observed atmosphere-ocean system is then described by showing how the balances of radiation, mass, angular momentum, water, and energy are maintained during present climatic conditions. Next, a hierarchy of mathematical models that successfully simulate various aspects of the climate is discussed, and examples are given of how three-dimensional general circulation models are being used to increase our understanding of the global climate "machine." Finally, the possible impact of human activities on climate is discussed, with main emphasis on likely future heating due to the release of carbon dioxide in the atmosphere.

This publication has 70 references indexed in Scilit: