Kinetic and electrophoretic properties of native and recombined isoenzymes of human liver alcohol dehydrogenase

Abstract
Ten, electrophoretically distinct, molecular forms of alcohol dehydrogenase have been isolated from a single human liver by affinity and ion-exchange chromatography. The starch gel electrophoresis patterns after the dissociation-recombination of the forms are consistent with the hypothesis that they arise from the random combination of alpha, beta 1, gamma 1, and gamma 2 subunits into six heterodimeric and four homodimeric isoenzymes. Large differences in kinetic properties are observed for the homodimeric isoenzymes, alpha alpha, beta 1 beta 1, gamma 1 gamma 1, and gamma 2 gamma 2. At pH 7.5, the Km value of beta 1 beta 1 for ethanol is 0.049 mM and that of alpha alpha is 4.2 mM. Forms gamma 1 gamma 1 and gamma 2 gamma 2 do not obey Michaelis-Menten kinetics at pH 7.5 but exhibit negative cooperativity with Hill coefficients of 0.54 and 0.55 and [S]0.5 values of 1.0 and 0.63 mM, respectively. However, all isoenzymes display Michaelis-Menten kinetics for ethanol oxidation at pH 10.0 with Km values ranging from 1.5 to 3.2 mM. The maximum specific activity of beta 1 beta 1 is considerably lower than that of the other three homodimers at both pH 7.5 and 10.0. The Km values of the four homodimers for NAD+ at pH 7.5 range from 7.4 to 13 microM and those for NADH, from 6.4 to 33 microM. Ki values for NADH range from 0.19 to 1.6 microM. At pH 7.5, the kinetic properties of alpha alpha and beta 1 beta 1, prepared in vitro from dissociated and recombined alpha beta 1, are similar to those of the native homodimers. The forms gamma 1 gamma 1 and gamma 2 gamma 2, prepared from dissociated and recombined alpha gamma 1 and beta 1 gamma 2, respectively, exhibit negative cooperativity with Hill coefficients that are similar to those seen with the respective native homodimers.