Signal transduction of the GLP‐1‐receptor cloned from a human insulinoma

Abstract
GLP-1 (glucagon-like peptide 1 (7–36) amide) plays an important role in the regulation of insulin secretion and proinsulin gene expression of pancreatic β-cells. Patients with insulinoma tumors show uncontrolled insulin hypersecretion. This study demonstrates the molecular cloning of a cDNA for the GLP-1 receptor from a human insulinoma employing a λ-gt 11 cDNA library. The cloned cDNA encoded a seven transmembrane domain protein of 463 amino acids which showed high homology to the GLP-1 receptor in normal human pancreas. Four amino acid exchanges were found in comparison to a receptor sequence obtained from regular pancreatic islets. When transfected transiently into COS-7 or stably into fibroblast CHL cells a high affinity receptor was expressed which coupled to the adenylate cyclase with normal basal cAMP and increasing intracellular cAMP levels under GLP-1 stimulation. The receptor accepted GLP-1 and the non-mammalian agonist exendin-4 as high affinity ligands. In transfected COS-7 cells, GLP-1 did not influence intracellular calcium, whereas in the stably transfected fibroblasts GLP-1 transiently increased intracellular calcium to a small extent. The understanding of GLP-1 receptor regulation and signal transduction will aid in the discovery of compounds that act as agonists of the GLP-1 receptor for potential use in the treatment of diabetes and will facilitate the understanding of its expression under normal and pathophysiological conditions.