Abstract
By simply supporting carbon nanotubes with a metal substrate of a redox potential lower than that of the metal ions to be reduced into nanoparticles, we have developed a facile yet versatile and effective substrate-enhanced electroless deposition (SEED) method for functionalizing nanotubes with a large variety of metal nanoparticles, including those otherwise impossible by more conventional electroless deposition methods, in the absence of any additional reducing agent. The nanotube-supported metal nanoparticles thus produced are electrochemically active, and the newly developed SEED process represents a significant advance in functionalization of carbon nanotubes with metal nanoparticles for a wide range of potential applications, including in advanced sensing and catalytic systems.