Sibling species distributions of the Simulium damnosum complex in the West African Onchocerciasis Control Programme area during the decade 1984–93, following intensive larviciding since 1974

Abstract
During the decade from 1984 to 1993, nine species of the Simulium damnosum complex of blackflies (Diptera: Simuliidae) were identified from the area covered by the Onchocerciasis Control Programme. These were S. damnosum s.s., S. dieguerense, S. konkourense, S. leonense, S. sanctipauli, S. sirbanum, S. soubrense, S. squamosum, and S. yahense. Some of these species were found to consist of two chromosomal variant populations. These were S. konkourense‘Konkouré' and ‘Menankaya' forms, S. sanctipauli sensu stricto and‘Djodji' form, S. soubrense‘Chute Milo' and ‘Beffa' forms. The distribution of these twelve cytological taxa was assessed in relation to the two main vegetation zones of West Africa (forest and savanna), topography, river size and other factors. The range of each species was influenced by seasonal climatic changes in wind movement and river water level. The most widely distributed species were S. sirbanum and S. damnosum s.s., associated with savanna areas, recorded from all river basins. Simulium dieguerense was restricted mainly to Western Mali on the Rivers Bafing and Bakoye in the Senegal River basin. Simulium squamosum was identified from rivers draining mountainous areas in both the forest and savanna zones. Simulium yahense was found in small permanent rivers along a wide forested band parallel to the coast and was absent from the plains of Togo and Benin. Members of the S. sanctipauli subcomplex had restricted distributions except for S. sanctipauli s.s., which was widespread in large rivers of the forest zone from Sierra Leone to the Volta Lake in Ghana. Simulium soubrense‘Beffa' form occurred in Togo and Benin, S. soubrense‘Chutes Milo' form in Guinea, both ‘Konkouré' and ‘Menankaya' forms of S. konkourense occurred predominantly in Guinea and S. leonense in Sierra Leone. The relevance of the distribution maps and the importance of the data bank to vector control larvicidal operations are discussed.