Abstract
Properties of neat liquid formamide ( HCONH 2 ) have been studied by the combination of gradient-corrected density-functional theory, norm-conserving pseudopotentials, and the adaptive finite-element method. The structural and dynamical quantities have been calculated through molecular dynamics simulations under the Born-Oppenheimer approximation. Satisfactory agreement with experimental data was obtained for both intramolecular and intermolecular properties. Our results are also compared with those of the empirical potential functions to clarify their accuracies.