A Parametric Study of Prandtl Number Effects on Laminar Natural Convection Heat Transfer From a Horizontal Circular Cylinder to Its Coaxial Triangular Enclosure

Abstract
A parametric study of Prandtl number effects on laminar natural convection heat transfer in a horizontal equilateral triangular cylinder with a coaxial circular cylinder is conducted. The Prandtl number is varied over a wide range from 10−2 to 105, which corresponds to a variety of working fluids. The governing equations with the Boussinesq approximation for buoyancy are iteratively solved using the finite volume approach. It is shown that the flow patterns and temperature distributions are unique for low-Prandtl-number fluids (Pr ≤ 0.1), and are nearly independent of Prandtl number when Pr ≥ 0.7. In addition, the inclination angle of the triangular enclosure is found to noticeably affect the variations of the local Nusselt number, and to have insignificant influence on the average Nusselt numbers for low Rayleigh numbers when Pr ≥ 0.7.