Abstract
Decomposition rates and nutrient dynamics (for N, P, K, Ca, Mg, Mn, and Na) were determined for green needles of western hemlock (Tsugaheterophylla (Raf.) Sarg.) and Pacific silver fir (Abiesamabilis (Dougl.) Forb.) in an old-growth forested watershed (58 ha West Twin Creek) in the Hoh River valley, Olympic National Park, Washington. The influence of temperature and substrate chemistry on decomposition was determined. Temperature was the dominant factor controlling decomposition rates in the first year in this watershed, with the fastest decomposition at an elevation of 275 m (lower watershed) and the slowest decomposition at 725 m (upper watershed). After 12 months mass loss averaged 36% in the lower watershed and 28% in the upper watershed. There was no significant difference in decomposition rates between species. Substrate chemistry, i.e., the lignin/N ratio, became a more important factor than temperature as decomposition proceeded. After 37 months mass loss for needles averaged 61% for western hemlock and 50% for Pacific silver fir, with no difference by watershed location. After 61 months both types of substrates appeared to be approaching similar substrate chemistry and similar decomposition rates and there were no significant differences by species or watershed location. Decomposition constants (k values) after 61 months were 0.26 and 0.20 year−1 for western hemlock needles in the lower and upper watershed, respectively, and 0.22 and 0.19 year−1 for Pacific silver fir needles in the lower and upper watershed, respectively. Nitrogen was immobilized during the first 12 months of decomposition in needles of both species and then released. No other elements were immobilized during the initial (0- to 12-month) decomposition period, except for Ca in Pacific silver fir needles. However, in the 37- to 61-month period there was a considerable immobilization of Mg and Na in both species in the upper and lower watershed and K and Mn in both species in the upper watershed.