Abstract
The primary aggregate structure in high structure blacks is broken down when the blacks are milled in rubber. The breakdown, it is shown further, involves the disruption initially of more easily disrupted forces, and then subsequently of more difficultly disrupted forces. If the total structure breakdown is segmented accordingly, one finds that carbon blacks differ markedly in the proportion of the breakdown which occurs in each segment. But only the breakage of more difficultly disrupted structure is identified with chemical changes in the black and with concomitantly increased carbon—polymer interaction activity, i.e., with enhanced reinforcement. In studying the breakage of aggregate black structure which occurs when the blacks are milled in rubber, the following factors are considered: (1) Carbon Black Concentration: Breakage increases continuously, though not steadily, with carbon black concentration. This result is used to emphasize the merits of concentrated black masterbatching as the means for producing high quality products from SBR, BR, and EPDM rubbers. (2) Carbon Black Structure: Taking the total structure breakage over a broad range of carbon black concentrations, the extent of the breakage increases with the extent of the primary aggregate structure in the original black. (3) Polymer Viscosity or Molecular Weight: The extent to which breakage occurs on milling increases with the polymer viscosity or molecular weight. Since this result clearly cites the need for high shearing forces during milling, the severe limitations which must attend the use of plasticizing oils is implied. (4) Open Mill vs Banbury Mixing: The extent to which breakage occurs in the Banbury is significantly less than that on the two roll mill. Evidence is presented to show that this, clearly, is a temperature related result and, as in (3) above, that the magnitude of the shearing forces is the critical factor.