Abstract
Silver deposited on an inert surface with a very large area exhibits a strong catalytic interaction with oxygen which results in strong bactericidal activity. This catalytic process is fundamentally different from other known silver-based approaches which deliver low levels of silver ions into water. Two factors appear to control the rate of this catalytic reaction process: (1) the size and dispersion of the silver crystals and surface area of the supporting bed; and (2) the volume of oxygen in solution. The source of the oxygen can be atmospheric oxygen dissolved in the water or, for a greatly enhanced reaction rate, dissolved ozone produced by an ozone generator. In this process, oxygen molecules absorbed onto the catalyst surface are subsequently transferred to other oxidizable substrates including bacteria and viruses. These catalytic oxidizing reactions exhibit two properties of significance in the sanitation of water. First, because oxygen on the catalyst surface reacts with both living and nonliving substrates, bacteria or viruses which are in the water flowing over the catalyst-containing medium are killed or inactivated on contact by the oxidizing reactions (i.e., without requiring the release of metals into water). Second, oxygen also is transferred to oxidizable inorganics (such as bromide ion) to generate readily measurable and relatively stable “residual” oxidizers/disinfectants that continue to sanitize water downstream. Results of this Author's experiments have been independently replicated by sources from the University of Arizona, and at Herbert V. Shuster, Inc. Laboratories in Massachusetts.