Abstract
Most clusters and groups of galaxies contain a giant elliptical galaxy in their centers that far outshines and outweighs normal ellipticals. The origin of these brightest cluster galaxies is intimately related to the collapse and formation of the cluster. Using an N-body simulation of a cluster of galaxies in a hierarchical cosmological model, we show that galaxy merging naturally produces a massive central galaxy with surface brightness and velocity dispersion profiles similar to those of observed BCGs. To enhance the resolution of the simulation, 100 dark halos at z = 2 are replaced with self-consistent disk + bulge + halo galaxy models following a Tully-Fisher relation using 100,000 particles for the 20 largest galaxies and 10,000 particles for the remaining ones. This technique allows us to analyze the stellar and dark-matter components independently. The central galaxy forms through the merger of several massive galaxies along a filament early in the cluster's history. Galactic cannibalism of smaller galaxies through dynamical friction over a Hubble time only accounts for a small fraction of the accreted mass. The galaxy is a flattened, triaxial object whose long axis aligns with the primordial filament and the long axis of the cluster galaxy distribution, agreeing with observed trends for galaxy cluster alignment.

This publication has 53 references indexed in Scilit: