Abstract
In response to ocular herpes simplex virus type 1 (HSV-1) infection in mice, a rapid induction or increase in the local expression of chemokines, including CXCL10, is found. The present study investigated the role of the receptor for CXCL10, CXCR3, in the host response to corneal HSV-1 infection. Mice deficient in CXCR3 (CXCR3−/−) were found to have an increase in infectious virus in the anterior segment of the eye by day 7 postinfection. Coinciding with the increase, selective chemokines, including CCL2, CCL3, CCL5, CXCL9, and CXCL10, were elevated in the anterior segment of the HSV-1-infected CXCR3−/− mice. In contrast, there was a time-dependent reduction in the recruitment of natural killer (NK) cells (NK1.1+CD3) into the anterior segment of CXCR3−/− mice. A reduction in NK cells residing in the anterior segment of mice following antiasialoGM1 antibody treatment resulted in an increase in infectious virus. No other leukocyte populations infiltrating the tissue were modified in the absence of CXCR3. Collectively, the loss of CXCR3 expression specifically reduces NK cell mobilization into the cornea in response to HSV-1.