Modeling and analysis of the electron cyclotron resonance diamond-like carbon deposition process

Abstract
Diamond-like carbon (DLC) films were deposited using the electron cyclotron resonance (ECR) chemical vapor deposition process. The behavior of the ECR plasma was formulated using deposition conditions such as microwave power, pressure, and hydrogen/methane ( H 2 /CH 4 ) ratio as input parameters. Thereafter, the outputs were used to formulate a DLC film deposition model, which takes into account the ion bombardment at the film surface, attachment of carbon-carrying ions, and chemisorption of hydrocarbon radicals on the film and hydrogen–surface reactions. The DLC film deposition model suggests that under conditions of high hydrogen atom flux, the main precursors are carbon-carrying ions. Hydrocarbon radicals, such as CH 3 , only contribute to ∼20% of the total film deposition rate.