Lithology discrimination from physical rock properties

Abstract
The estimation of lithology from multiple geophysical survey methods needs to be addressed to develop advanced tomographic methods. An initial requirement for lithology discrimination is that lithology should be discriminable from the media properties physically related to the geophysical observations. To test this condition for different combinations of the most common crustal rocks, we performed several lithology discrimination exercises on rock samples under laboratory conditions. The physical properties included mass density, compressional velocity, shear velocity, electric conductivity, thermal conductivity, and magnetic susceptibility. A categorical description of the sample lithology was followed; hence, the inference consisted of predicting the sample rock category (lithotype) membership. The joint information provided by the physical properties of the rocks allowed us to discriminate the sample lithotype correctly, with an overall success rate of 100% in the most favorable situation and over 85% in the least favorable situation. We obtained successful classification results for a variety of common lithotypes (granite, gabbro, limestone, tuff, marble, basalt, and gneiss) using three common classification methods: clustering analysis, Gaussian classification, and discriminant analysis. Although discrimination was positive with each of these multivariate classification techniques, discriminant analysis showed some advantages for the classification and graphic analysis of the data. These results support our postulate that lithology can be estimated reliably if multiple geophysical observations are considered jointly.