Observation of water dangling OH bonds around dissolved nonpolar groups

Abstract
We report the experimental observation of water dangling OH bonds in the hydration shells around dissolved nonpolar (hydrocarbon) groups. The results are obtained by combining vibrational (Raman) spectroscopy and multivariate curve resolution (MCR), to reveal a high-frequency OH stretch peak arising from the hydration shell around nonpolar (hydrocarbon) solute groups. The frequency and width of the observed peak is similar to that of dangling OH bonds previously detected at macroscopic air–water and oil–water interfaces. The area of the observed peak is used to quantify the number of water dangling bonds around hydrocarbon chains of different length. Molecular dynamics simulation of the vibrational spectra of water molecules in the hydration shell around neopentane and benzene reveals high-frequency OH features that closely resemble the experimentally observed dangling OH vibrational bands around neopentyl alcohol and benzyl alcohol. The red-shift of ≈50 cm−1 induced by aromatic solutes is similar to that previously observed upon formation of a π-H bond (in low-temperature benzene–water clusters).

This publication has 36 references indexed in Scilit: