Highly efficient white organic light emitting diodes comprising an interlayer to separate fluorescent and phosphorescent regions

Abstract
White organic light emitting diodes combining the phosphorescent green and orange-red emitting systems fac tris(2-phenylpyridine) iridium doped 4,4′,4″-tris(N-carbazolyl)-triphenylamine (TCTA) and iridium(III)bis(2-methyldibenzo-[f,h]quinoxaline)(acetylacetonate) doped N,N′-di(naphthalen-1-yl)-N,N′-diphenyl-benzidine with the blue fluorescent dye 2,2′,7,7′-tetrakis(2,2-diphenylvinyl)spiro-9,9′-bifluorene (Spiro-DPVBi) are presented. By introducing a thin layer of coevaporated TCTA and 2,2′,2″ (1,3,5-benzenetriyl) tris-[1-phenyl-1H-benzimidazole] between the phosphorescent and the fluorescent region, both singlet and triplet excitons are confined efficiently, whereas charge carriers still pass easily this interlayer. Furthermore, the interlayer suppresses Dexter transfer of the phosphorescent excitons to the nonradiative triplet state of Spiro-DPVBi. Best devices reach a current efficiency of 16.3cd∕A at 100cd∕m2 and a color rendering index of 85 at warm white CIE chromaticity coordinates of (0.47, 0.42). Due to the use of electrically doped charge transport layers, 100cd∕m2 are obtained at 2.95V with a power efficiency of 17.4lm∕W.