Stefan Problem through Extended Finite Elements: Review and Further Investigations

Abstract
A general review of the extended finite element method and its application to the simulation of first-order phase transitions is provided. Detailed numerical investigations are then performed by focusing on the one-dimensional case and studying: (i) spatial and temporal discretisations, (ii) different numerical techniques for the interface-condition enforcement, and (iii) different treatments for the blending elements. An embeddeddiscontinuity finite element approach is also developed and compared with the extended finite element method, so that a clearer insight of the latter can be given. Numerical examples for melting/solidification in planar, cylindrical, and spherical symmetry are presented and the results are compared with analytical solutions.

This publication has 56 references indexed in Scilit: