Core-level photoemission and near-edge x-ray absorption fine-structure studies of GaN surface under low-energy ion bombardment

Abstract
We have investigated compositional changes on GaN surfaces under low-energy Ar ion bombardment using synchrotron-based high-resolution core-level photoemission measurements and near-edge x-ray absorption fine-structure (NEXAFS) spectroscopy. The low-energy ion bombardment of GaN produces a Ga-rich surface layer which transforms into a metallic Ga layer at higher bombarding energies. At the same time, the photoemission spectra around the N 1s core level reveal the presence of both uncoordinated nitrogen and nitrogen interstitials, which we have analyzed in more detail by x-ray absorption measurements at the N K-edge. We have proposed a mechanism for the relocation and loss of nitrogen during ion bombardment, in agreement with some recent experimental and theoretical studies of defect formation in GaN. We have also demonstrated that photoemission spectroscopy and NEXAFS provide a powerful combination for studying compositional changes and the creation of point defects at GaN surface.

This publication has 33 references indexed in Scilit: