Inductive Power Transfer Systems for PT-Based Ozone-Driven Circuit With Flexible Capacity Operation and Frequency-Tracking Mechanism

Abstract
This paper presents inductive power transfer (IPT) systems for a piezoelectric transformer (PT) based ozone-driven circuit with flexible capacity operation and frequency-tracking mechanism. The proposed system consists of an IPT circuit as the front stage along with an ozone-driven circuit as the back stage. Considering that the ozone generator system was often used under high-humidity and particle-polluted environment, the study hence proposes a contactless power source such that the oxidization and rustiness can be better avoided. Next, by taking the system expansion into consideration, this paper proposes multiple modular parallel PTs in order to increase the output capacity of the designated circuit. This is further followed by a frequency-tracking control developed to promote power delivery efficiency. To confirm this proposed method, the developed system has been realized with hardware circuit validation. Experimental results demonstrate that the proposed system not only delivers the power effectively, but also ensures balanced output current of each PT, thereby facilitating the approach for the ozone-driven applications.

This publication has 21 references indexed in Scilit: