Conversion of silicon carbide to crystalline diamond-structured carbon at ambient pressure

Abstract
Synthetic diamond is formed commercially using high-pressure1, chemical-vapour-deposition2 and shock-wave3 processes, but these approaches have serious limitations owing to low production volumes and high costs. Recently suggested alternative methods of diamond growth include plasma activation4, high pressures5, exotic precursors6,7 or explosive mixtures8, but they suffer from very low yield and are intrinsically limited to small volumes or thin films. Here we report the synthesis of nano- and micro-crystalline diamond-structured carbon, with cubic and hexagonal structure, by extracting silicon from silicon carbide in chlorine-containing gases at ambient pressure and temperatures not exceeding 1,000 °C. The presence of hydrogen in the gas mixture leads to a stable conversion of silicon carbide to diamond-structured carbon with an average crystallite size ranging from 5 to 10 nanometres. The linear reaction kinetics allows transformation to any depth, so that the whole silicon carbide sample can be converted to carbon. Nanocrystalline coatings of diamond-structured carbon produced by this route show promising mechanical properties, with hardness values in excess of 50 GPa and Young's moduli up to 800 GPa. Our approach should be applicable to large-scale production of crystalline diamond-structured carbon.