Neutrophil elastase cleaves epithelial cadherin in acutely injured lung epithelium

Abstract
In acutely injured lungs, massively recruited polymorphonuclear neutrophils (PMNs) secrete abnormally neutrophil elastase (NE). Active NE creates a localized proteolytic environment where various host molecules are degraded leading to impairment of tissue homeostasis. Among the hallmarks of neutrophil-rich pathologies is a disrupted epithelium characterized by the loss of cell-cell adhesion and integrity. Epithelial-cadherin (E-cad) represents one of the most important intercellular junction proteins. E-cad exhibits various functions including its role in maintenance of tissue integrity. While much interest has focused on the expression and role of E-cad in different physio- and physiopathological states, proteolytic degradation of this structural molecule and ensuing potential consequences on host lung tissue injury are not completely understood. NE capacity to cleave E-cad was determined in cell-free and lung epithelial cell culture systems. The impact of such cleavage on epithelial monolayer integrity was then investigated. Using mice deficient in NE in a clinically relevant experimental model of acute pneumonia, we examined whether degraded E-cad is associated with lung inflammation and injury and whether NE contributes to E-cad cleavage. Finally, we checked for the presence of both degraded E-cad and NE in bronchoalveolar lavage samples obtained from patients with exacerbated COPD, a clinical manifestation characterised by a neutrophilic inflammatory response. We show that NE is capable of degrading E-cad in vitro and in cultured cells. NE-mediated degradation of E-cad was accompanied with loss of epithelial monolayer integrity. Our in vivo findings provide evidence that NE contributes to E-cad cleavage that is concomitant with lung inflammation and injury. Importantly, we observed that the presence of degraded E-cad coincided with the detection of NE in diseased human lungs. Active NE has the capacity to cleave E-cad and interfere with its cell-cell adhesion function. These data suggest a mechanism by which unchecked NE participates potentially to the pathogenesis of neutrophil-rich lung inflammatory and tissue-destructive diseases.
Funding Information
  • Inserm Avenir Program, Agence Nationale de la Recherche, Fondation pour la Recherche Médicale, Fonds AGIR pour les Maladies Chroniques. (ID0EM6AE1806)

This publication has 55 references indexed in Scilit: