Lipoprotein(a) vascular accumulation in mice. In vivo analysis of the role of lysine binding sites using recombinant adenovirus.

Abstract
Although the mechanism by which lipoprotein(a) [Lp(a)] contributes to vascular disease remains unclear, consequences of its binding to the vessel surface are commonly cited in postulated atherogenic pathways. Because of the presence of plasminogen-like lysine binding sites (LBS) in apo(a), fibrin binding has been proposed to play an important role in Lp(a)'s vascular accumulation. Indeed, LBS are known to facilitate Lp(a) fibrin binding in vitro. To examine the importance of apo(a) LBS in Lp(a) vascular accumulation in vivo, we generated three different apo(a) cDNAs: (a) mini apo(a), based on wild-type human apo(a); (b) mini apo(a) containing a naturally occurring LBS defect associated with a point mutation in kringle 4-10; and (c) human- rhesus monkey chimeric mini apo(a), which contains the same LBS defect in the context of several additional changes. Recombinant adenovirus vectors were constructed with the various apo(a) cDNAs and injected into human apoB transgenic mice. At the viral dosage used in these experiments, all three forms of apo(a) were found exclusively within the lipoprotein fractions, and peak Lp(a) plasma levels were nearly identical (approximately 45 mg/dl). In vitro analysis of Lp(a) isolated from the various groups of mice confirmed that putative LBS defective apo(a) yielded Lp(a) unable to bind lysine-Sepharose. Quantitation of in vivo Lp(a) vascular accumulation in mice treated with the various adenovirus vectors revealed significantly less accumulation of both types of LBS defective Lp(a), relative to wild-type Lp(a). These results indicate a correlation between lysine binding properties of Lp(a) and vascular accumulation, supporting the postulated role of apo(a) LBS in this potentially atherogenic characteristic of Lp(a).