The North American Monsoon

Abstract
The North American monsoon is an important feature of the atmospheric circulation over the continent, with a research literature that dates back almost 100 years. The authors review the wide range of past and current research dealing with the meteorological and climatological aspects of the North American monsoon, highlighting historical development and major research themes. The domain of the North American monsoon is large, extending over much of the western United States from its region of greatest influence in northwestern Mexico. Regarding the debate over moisture source regions and water vapor advection into southwestern North America, there is general agreement that the bulk of monsoon moisture is advected at low levels from the eastern tropical Pacific Ocean and the Gulf of California, while the Gulf of Mexico may contribute some upper-level moisture (although mixing occurs over the Sierra Madre Occidental). Surges of low-level moisture from the Gulf of California are a significant part of intraseasonal monsoon variability, and they are associated with the configuration of upper-level midlatitude troughs and tropical easterly waves at the synoptic scale, as well as the presence of low-level jets, a thermal low, and associated dynamics (including the important effects of local topography) at the mesoscale. Seasonally, the gulf surges and the latitudinal position of the midtropospheric subtropical ridge over southwestern North America appear to be responsible for much spatial and temporal variability in precipitation. Interannual variability of the North American monsoon system is high, but it is not strongly linked to El Niño or other common sources of interannual circulation variability. Recent mesoscale field measurements gathered during the South-West Area Monsoon Project have highlighted the complex nature of the monsoon-related severe storm environment and associated difficulties in modeling and forecasting.