Preconditioning of Coronary Artery Against Vasoconstriction by Endothelin-1 and Prostaglandin F2α During Repeated Downregulation of ∊-Protein Kinase C

Abstract
The cellular mechanisms of coronary vasospasm are unclear, and a role for protein kinase C (PKC) activation by the endogenous vasoconstrictors endothelin-1 (ET-1) and prostaglandin F2alpha (PGF2alpha) has been suggested. In this study, we developed a phorbol ester-induced PKC downregulation protocol to investigate the relation between the amount and activity of specific PKC isoforms in coronary arterial smooth muscle and coronary vasoconstriction by ET-1 and PGF2alpha. Isometric tension was measured in deendothelialized porcine coronary artery strips, [Ca2+]i was monitored in single coronary smooth muscle cells loaded with fura-2, and the whole tissue, cytosolic, and particulate fractions were examined for PKC activity and reactivity with isoform-specific anti-PKC antibodies using Western blot analysis. In Ca(2+)-free (2 mM EGTA) Krebs solution, ET-1 (10(-7) M), PGF2alpha (10(-5) M) and PKC activator phorbol 12,13-dibutyrate (PDBu) (10(-6) M) caused significant contractions that were completely inhibited by the PKC inhibitors staurosporine and calphostin C, no significant change in [Ca2+]i, and significant activation and translocation of the Ca(2+)-independent epsilon-PKC but not the Ca(2+)-dependent alpha-PKC. In Ca(2+)-free Krebs, a single application of PDBu produced maximal contraction and PKC activity after 30 min, which declined to basal levels in 3 h and remained steady for 24 h, but did not prevent subsequent increases in contraction and PKC activity with a new addition of PDBu and did not significantly decrease the amount of alpha- or epsilon-PKC. Repeated (five to eight) applications of PDBu in Ca(2+)-free Krebs at 3-h intervals completely inhibited subsequent increases in contraction and PKC activity to PDBu, ET-1, or PGF2alpha, and significantly decreased the amount of epsilon-PKC but not that of alpha-PKC. These results provide evidence that a Ca(2+)-independent coronary vasoconstriction induced by ET-1 and PGF2alpha is associated with activation of the epsilon-PKC isoform. The results suggest that, in coronary artery smooth muscle, downregulation of PKC is isoform specific and is more dependent on the frequency rather than the duration of PKC activation. The results also suggest that repeated downregulation of epsilon-PKC might play a role in preconditioning of the coronary artery against vasoconstriction by ET-1 and PGF2alpha.