Abstract
The effect of freezing, desiccation and various electrolytes on photophosphorylation, electron transport and some enzyme reactions of isolated spinach chloroplasts has been investigated. Freezing of broken chloroplasts took place at-25°C for 3 hrs; desiccation was performed at +2°C in vacuo over CaCl2 for 3 hrs. The influence of various electrolytes during freezing or drying or during incubation of thylakoids or stroma enzymes for 3 hrs at +2°C in electrolyte solutions was determined. After treatment, the activities of a number of enzymes and enzyme systems were measured under normal conditions, e. g. in the absence of elevated electrolyte levels in a reaction medium which contained only the substrates and cofactors which are necessary for the respective enzyme reactions. Only photophosphorylation and electron transport were affected by freezing, desiccation and high concentrations of electrolytes; various soluble enzymes investigated here were not inactivated under the same conditions. In general, mild dehydration and lower concentrations of electrolytes resulted in an irreversible inactivation of ATP synthesis but did not impair ferricyanide reduction. With increasing dehydration or at higher concentrations of electrolytes the Hill reaction was also inhibited. In a certain range of dehydration and electrolyte concentration uncoupling of photophosphorylation from electron transport took place. Sugar protects the sensitive structures against the deleterious effect of both dehydration and high concentration of electrolytes. Various electrolytes affected thylakoid membranes differently. Inactivation of the membranes increased with increasing ion radius and decreasing hydration envelope of univalent or divalent cations. Divalent cations were more destructive than univalent cations. Anions did not follow these rules. Within a group of similar anions (halides or organic anions) effectivity decreased with increasing hydration envelope. On a molar basis, polyvalent anions were less effective than univalent anions. Inactivation by anions followed Hofmeister's series in seversed order. However, exceptions were observed and it appears that various ions affect the membrane in a specific manner. Inactivation of photophosphorylation and electron transport due to freezing or desiccation is identical to that due to high concentrations of electrolytes. This suggests that during dehydration due to freezing or drying the concentration of electrolytes in the remaining solution is responsible for the inactivation of the sensitive membranes.