Leaching of Cryptosporidium parvum Oocysts, Escherichia coli, and a Salmonella enterica Serovar Typhimurium Bacteriophage through Intact Soil Cores following Surface Application and Injection of Slurry

Abstract
Increasing amounts of livestock manure are being applied to agricultural soil, but it is unknown to what extent this may be associated with contamination of aquatic recipients and groundwater if microorganisms are transported through the soil under natural weather conditions. The objective of this study was therefore to evaluate how injection and surface application of pig slurry on intact sandy clay loam soil cores influenced the leaching ofSalmonella entericaserovar Typhimurium bacteriophage 28B,Escherichia coli, andCryptosporidium parvumoocysts. All three microbial tracers were detected in the leachate on day 1, and the highest relative concentration was detected on the fourth day (0.1 pore volume). Although the concentration of the phage 28B declined over time, the phage was still found in leachate at day 148.C. parvumoocysts and chloride had an additional rise in the relative concentration at a 0.5 pore volume, corresponding to the exchange of the total pore volume. The leaching ofE. coliwas delayed compared with that of the added microbial tracers, indicating a stronger attachment to slurry particles, butE. colicould be detected up to 3 months. Significantly enhanced leaching of phage 28B and oocysts by the injection method was seen, whereas leaching of the indigenousE. coliwas not affected by the application method. Preferential flow was the primary transport vehicle, and the diameter of the fractures in the intact soil cores facilitated transport of all sizes of microbial tracers under natural weather conditions.