Predicting Atlantic Basin Seasonal Tropical Cyclone Activity by 1 August

Abstract
More than 90% of all seasonal Atlantic tropical cyclone activity typically occurs after 1 August. A strong predictive potential exists that allows seasonal forecasts of Atlantic basin tropical cyclone activity to be issued by 1 August, prior to the start of the active portion of the hurricane season. Predictors include June-July meteorological information of the stratospheric quasi-biennial oscillation (QBO), West African rainfall, the El Niño-Southern Oscillation (ENSO) as well as sea level pressure anomalies (SLPA), and the upper-tropospheric zonal-wind anomalies (ZWA) in the Caribbean basin. Use of a combination of these global and regional predictors provides a basis for making cross-validated (jackknifed) 1 August hindcasts of subsequent Atlantic seasonal tropical cyclone activity that show substantial skill over climatology. This relationship is demonstrated in 41 years of hindcasts of the 1950-90 seasons. It is possible to independently explain more than 60% of the year-to-year variability associated with intense (category 3–4–5) hurricane activity. This is significant because over 70% of all United States tropical cyclone damage comes from intense hurricanes, and over 98% of intense hurricane activity occurs after 1 August. Empirical evidence suggests that least sum of absolute deviations (LAD) regression yields substantially more improved cross-validated results than an analogous procedure based on ordinary least sum of squared deviations (OLS) regression. This improvement surprisingly occurs even with the squared Pearson product-moment correlation coefficient for which one might anticipate OLS regression to yield better cross-validated results than LAD regression.