ELECTRON MICROSCOPY OF OSTEOCLASTS IN HEALING FRACTURES OF RAT BONE

Abstract
Osmium-fixed, undecalcified, callus tissue from healing fractures of rat tibias was sectioned with a diamond knife for study with the electron microscope. Large multinucleated cells were found adjacent to bone. A characteristic labyrinthine infolded border was consistently seen in parts of the cells close to the bone surface The innermost parts of this "ruffled border" gave rise to vacuoles. The bone surface was always disrupted under the "ruffled border" of the cells. Needle-like crystals were seen at the osseous fringe, within folds in the ruffled border as well as within vacuoles deeper in the cells. Collagen fibers denuded of crystals were never observed. Mitochondria, containing clusters of fine granules, were abundant. The part of the cell away from bone contained rough endoplasmic reticulum and the cell membrane was thrown into irregular microvilli. These observations are discussed in relation to current concepts of osteoclastic resorption of bone.