Abstract
When body-centered-cubic crystals undergo plastic deformation, the slip planes are often noncrystallographic. By performing atomistic simulation on the activation pathway of dislocation jumps in bcc iron, we show that the main reason for bcc crystals to exhibit this phenomenon is that one type of kink pair has significantly lower energy than all the other types on the same slip plane. Dislocation motion therefore cannot continue on the same slip plane, and the dislocation has to cross slip onto an intersecting slip plane after each atomic jump. Thus in the long run, the average slip plane would be zigzag and noncrystallographic.

This publication has 9 references indexed in Scilit: