Stimulus contrast modulates functional connectivity in visual cortex

Abstract
By simultaneously recording spikes and local field potentials (LFPs) in cat and monkey visual cortex, the authors demonstrate that the magnitude and spread of LFP waves from the originating spike are reduced with increasing stimulus contrast. This suggests that visual cortex functional connectivity is not fixed, but is instead modulated by stimulus contrast. Neurons in visual cortex are linked by an extensive network of lateral connections. To study the effect of these connections on neural responses, we recorded spikes and local field potentials (LFPs) from multi-electrode arrays that were implanted in monkey and cat primary visual cortex. Spikes at each location generated outward traveling LFP waves. When the visual stimulus was absent or had low contrast, these LFP waves had large amplitudes and traveled over long distances. Their effect was strong: LFP traces at any site could be predicted by the superposition of waves that were evoked by spiking in a ∼1.5-mm radius. As stimulus contrast increased, both the magnitude and the distance traveled by the waves progressively decreased. We conclude that the relative weight of feedforward and lateral inputs in visual cortex is not fixed, but rather depends on stimulus contrast. Lateral connections dominate at low contrast, when spatial integration of signals is perhaps most beneficial.