Modeling the Infrared Bow Shock at δ Velorum: Implications for Studies of Debris Disks and λ Bootis Stars

Abstract
We have discovered a bow shock shaped mid-infrared excess region in front of delta Velorum using 24 micron observations obtained with the Multiband Imaging Photometer for Spitzer (MIPS). The excess has been classified as a debris disk from previous infrared observations. Although the bow shock morphology was only detected in the 24 micron observations, its excess was also resolved at 70 micron. We show that the stellar heating of an ambient interstellar medium (ISM) cloud can produce the measured flux. Since delta Velorum was classified as a debris disk star previously, our discovery may call into question the same classification of other stars. We model the interaction of the star and ISM, producing images that show the same geometry and surface brightness as is observed. The modeled ISM is 15 times overdense relative to the average Local Bubble value, which is surprising considering the close proximity (24 pc) of delta Velorum. The abundance anomalies of lambda Bootis stars have been previously explained as arising from the same type of interaction of stars with the ISM. Low resolution optical spectra of delta Velorum show that it does not belong to this stellar class. The star therefore is an interesting testbed for the ISM accretion theory of the lambda Bootis phenomenon.Comment: 11 pages, 1 table and 13 figures, emulateapj; Accepted for publication in The Astrophysical Journa

This publication has 39 references indexed in Scilit: