mdr-1 Single Nucleotide Polymorphisms in Ovarian Cancer Tissue: G2677T/A Correlates with Response to Paclitaxel Chemotherapy

Abstract
Purpose: P-glycoprotein, encoded by the mdr-1 gene, confers multidrug resistance to a variety of antineoplastic agents, e.g., paclitaxel. Recently, different polymorphisms in the mdr-1 gene have been identified and their consequences for the function of P-glycoprotein, as well as for the treatment response to P-glycoprotein substrates, are being clarified. We analyzed the allelic frequencies at polymorphic sites G2677T/A and C3435T in ovarian cancer patients with good or poor response to treatment with paclitaxel in combination with carboplatin in order to evaluate their predictive values. Experimental Design: Fifty-three patients were included in the study; 28 of them had been relapse-free for at least 1 year and 25 had progressive disease or relapsed within 12 months. A reference material consisting of 200 individuals was also analyzed. The genotypes of each single nucleotide polymorphism (SNP) were determined using Pyrosequencing. Results: The G2677T/A SNP was found to significantly correlate with treatment outcome. The probability of responding to paclitaxel treatment was higher in homozygously mutated patients (T/T or T/A; Fisher's exact test; P < 0.05). The frequency of the T or A alleles was also higher in the group of patients who had a good response (P < 0.05). There was also a dose-dependent influence of the number of mutated alleles on the response to paclitaxel treatment (χ2 test for linear-by-linear association; P = 0.03). However, the C3435T SNP was not found to correlate to treatment outcome. Conclusions: The mdr-1 polymorphism G2677T/A in exon 21 correlates with the paclitaxel response in ovarian cancer and may be important for the function of P-glycoprotein and resistance to paclitaxel and provide useful information for individualized therapy.