In‐vitro ligament tension pattern in the flexed knee in passive loading

Abstract
Tensions generated in selected bands of the four major ligaments of the flexed knee (40–90°) have been measured in vitro when the tibia is subjected to passive anterior translation and axial rotation with and without a compressive preload. The measurements were made in 30 fresh-frozen specimens using the buckle transducer attached to the anteromedial band of the anterior cruciate ligament [ACL (am)], the posterior fibers of the posterior cruciate ligament [PCL (pf)], the superficia fibres of the medial collateral ligament [MCL (sf)], and in the total lateral collateral ligament (LCL). Particular attention was placed on the evaluation of the performance of the transducer specific to such measurements in order to minimize the errors associated with the use of this transducer. The results indicate that, among the measured ligaments, substantial tension (>20 N) is generated only in the ACL (am) in tibial anterior translation up to 5 mm. The tension pattern generated in response to tibial axial rotation, however, is complex and exhibits considerable variation between specimens. In general, both the MCL (sf) and LCL are tensed at all tested flexion angles, with the tension in external rotation being significantly greater than in internal rotation. At 40° of flexion, the ACL (am) bears tension mainly in internal rotation, while at 90° of flexion the PCL (pf) is tensed in both senses of rotation. The response of the LCL shows marked variation among specimens; very small tension (15 N) is generated in internal rotation in 48% of the specimens, and in either sense of rotation in 20% of the specimens. The tension in the ACL (am) in internal rotation is invariably greater in those specimens in which LCL tension is negligible. This correlation between increased ACL (am) function and inadequate LCL restraint appears significant in terms of ACL injury and repair.