A Genome-Wide Metabolic QTL Analysis in Europeans Implicates Two Loci Shaped by Recent Positive Selection

Abstract
We have performed a metabolite quantitative trait locus (mQTL) study of the 1H nuclear magnetic resonance spectroscopy (1H NMR) metabolome in humans, building on recent targeted knowledge of genetic drivers of metabolic regulation. Urine and plasma samples were collected from two cohorts of individuals of European descent, with one cohort comprised of female twins donating samples longitudinally. Sample metabolite concentrations were quantified by 1H NMR and tested for association with genome-wide single-nucleotide polymorphisms (SNPs). Four metabolites' concentrations exhibited significant, replicable association with SNP variation (8.6×10−11<p−23). Three of these—trimethylamine, 3-amino-isobutyrate, and an N-acetylated compound—were measured in urine. The other—dimethylamine—was measured in plasma. Trimethylamine and dimethylamine mapped to a single genetic region (hence we report a total of three implicated genomic regions). Two of the three hit regions lie within haplotype blocks (at 2p13.1 and 10q24.2) that carry the genetic signature of strong, recent, positive selection in European populations. Genes NAT8 and PYROXD2, both with relatively uncharacterized functional roles, are good candidates for mediating the corresponding mQTL associations. The study's longitudinal twin design allowed detailed variance-components analysis of the sources of population variation in metabolite levels. The mQTLs explained 40%–64% of biological population variation in the corresponding metabolites' concentrations. These effect sizes are stronger than those reported in a recent, targeted mQTL study of metabolites in serum using the targeted-metabolomics Biocrates platform. By re-analysing our plasma samples using the Biocrates platform, we replicated the mQTL findings of the previous study and discovered a previously uncharacterized yet substantial familial component of variation in metabolite levels in addition to the heritability contribution from the corresponding mQTL effects. Physiological concentrations of metabolites—small molecules involved in biochemical processes in living systems—can be measured and used to diagnose and predict disease states. A common goal is to detect and clinically exploit statistical differences in metabolite concentrations between diseased and healthy individuals. As a basis for the design and interpretation of case-control studies, it is useful to have a characterization of metabolic diversity amongst healthy individuals, some of which stems from inter-individual genetic variation. When a single genetic locus has a sufficiently strong effect on metabolism, its genomic position can be determined by collecting metabolite concentration data and genome-wide genotype data on a set of individuals and searching for associations between the two data sets—a so-called metabolite quantitative trait locus (mQTL) study. By so tracing mQTLs, we can identify the genetic drivers of metabolism, characterize how the nature or quantity of the corresponding expressed protein(s) feeds forward to influence metabolite levels, and specify disease-predictive models that incorporate mutual dependence amongst genetics, environment, and metabolism.