Modified one-body nuclear dissipation

Abstract
We study a modification of the one-body dissipation mechanism for the conversion of energy of collective nuclear motion into internal single-particle excitation energy. One-body nuclear dissipation is a consequence of the long mean free path of nucleons inside a nucleus, and arises from nucleons colliding with the moving boundary of the nucleus rather than with other individual nucleons. In our modification, which attempts to incorporate self-consistency, the dissipation rate is proportional to an integral over the nuclear surface of the square of the normal component of the normal derivative of the velocity. The resulting properties of this dissipation are qualitatively similar to those of ordinary two-body viscosity rather than to those of the original one-body dissipation. In particular, for small oscillations about a sphere the dissipation rate increases with increasing multipole degree, and in fission this dissipation leads to more elongated scission shapes and to decreased fission-fragment kinetic energies. By adjusting the parameter that specifies the magnitude of this dissipation, we are able to reproduce adequately the experimental most probable fission-fragment kinetic energies for the fission of nuclei throughout the Periodic Table.