Generalized analysis of quasi-steady-state and quasi-transient measurements of carrier lifetimes in semiconductors

Abstract
Recently, a simple yet powerful carrier lifetime technique for semiconductor wafers has been introduced that is based on the simultaneous measurement of the light-induced photoconductance of the sample and the corresponding light intensity [Appl. Phys. Lett. 69, 2510 (1996)]. In combination with a light pulse from a flash lamp, this method allows the injection level dependent determination of the effective carrier lifetime in the quasi-steady-state mode as well as the quasi-transient mode. For both cases, approximate solutions (those for steady-state and transient conditions) of the underlying semiconductor equations have been used. However, depending on the actual lifetime value and the time dependence of the flash lamp, specific systematic errors in the effective carrier lifetime arise from the involved approximations. In this work, we present a generalized analysis that avoids these approximations and hence substantially extends the applicability of the quasi-steady-state and quasi-transient methods beyond their previous limits.