A transport modeling of the carbon-nitrogen cycle at Igapó I Lake - Londrina, Paraná State, Brazil

Abstract
This work is a contribution to a better understanding of the effect that domestic sewage discharges may cause in a water body, specifically at Igapó I Lake, in Londrina, Paraná State, Brazil. The simulation of the dynamics of pollutant concentrations throughout the water body was conducted by means of structured discretization of the geometry of Igapó I Lake, together with the finite differences and the finite elements methods. Firstly, the hydrodynamic flow (without the pollutants), modeled by Navier-Stokes and pressure equations, was numerically resolved by the finite differences method, and associated with the fourth order Runge-Kutta procedure. After that, by using the hydrodynamic field velocity, the flow of the reactive species (pollutants) was described through a reaction transport model, restricted to the carbon-nitrogen cycle. The reaction transport model was numerically resolved by the stabilized finite elements method, by means of a semi-discrete formulation. A qualitative analysis of the numerical simulations provided a better understanding of the dynamics of the processes involved in the flow of the reactive species, such as the dynamics of the nitrification process, of the biochemical demand of oxygen and of the level of oxygen dissolved in the water body at Igapó I Lake.