Kinetics and Mechanism of the Oxidation of Alkylaromatic Compounds by a trans-Dioxoruthenium(VI) Complex

Abstract
The oxidations of a series of 21 alkylaromatic compounds by trans-[Ru VI(L)(O) 2] 2+ (L = 1,12-dimethyl-3,4:9,10-dibenzo-1,12-diaza-5,8-dioxacyclopentadecane) have been studied in CH 3CN. Toluene is oxidized to benzaldehyde and a small amount of benzyl alcohol. 9,10-Dihydroanthracene is oxidized to anthracene and anthraquinone. Other substrates give oxygenated products. The kinetics of the reactions were monitored by UV-vis spectrophotometry, and the rate law is: -d[R VI]/dt = k 2[Ru VI][ArCH 3]. The kinetic isotope effects for the oxidation of toluene/d 8-toluene and fluorene/d 10-fluorene are 15 and 10.5, respectively. A plot of ΔH‡ versus ΔS‡ is linear, suggesting a common mechanism for all the substrates. In the oxidation of para-substituted toluenes, a linear correlation between log k 2 and σ 0 values is observed, consistent with a benzyl radical intermediate. A linear correlation between ΔG‡ and ΔH 0 (the difference between the strength of the bond being broken and that being formed in a H-atom transfer step) is also found, which strongly supports a hydrogen atom transfer mechanism for the oxidation of these substrates by trans-[Ru VI(L)(O) 2] 2+. The slope of (0.61 ± 0.06) is in reasonable agreement with the theoretical slope of 0.5 predicted by Marcus theory.link_to_subscribed_fulltex

This publication has 16 references indexed in Scilit: