Defining the Layers of a Sensory Cilium with STORM and Cryo-Electron Nanoscopies

Abstract
Primary cilia are cylindrical organelles extending from the surface of most animal cells that have been implicated in a host of signaling and sensory functions. Genetic defects in their component molecules, known as “ciliopathies” give rise to devastating symptoms, ranging from defective development, to kidney disease, to progressive blindness. The detailed structures of these organelles and the true functions of proteins encoded by ciliopathy genes are poorly understood because of the small size of cilia and the limitations of conventional microscopic techniques. We describe the combination of cryo-electron tomography, enhanced by sub-tomogram averaging, with super-resolution stochastic reconstruction microscopy (STORM) to define substructures and subdomains within the light-sensing rod sensory cilium of the mammalian retina. Longitudinal and radial domains are demarcated by structural features such as the axoneme and its connections to the ciliary membrane, and are correlated with molecular markers of these compartments, including Ca2+-binding protein centrin-2 in the lumen of the axoneme, acetylated tubulin forming the axoneme, the glycocalyx extending outward from the surface of the plasma membrane, and molecular residents of the space between axoneme and ciliary membrane, including Arl13B, intraflagellar transport proteins, BBS5, and syntaxin-3. Within this framework we document that deficiencies in the ciliopathy proteins BBS2, BBS7 and BBS9 lead to inappropriate accumulation of proteins in rod outer segments while largely preserving their sub-domain localization within the connecting cilium region, but alter the distribution of syntaxin-3 clusters.