Abstract
The problem of approximating a multivariable transfer function G(s) of McMillan degree n, by Ĝ(s) of McMillan degree k is considered. A complete characterization of all approximations that minimize the Hankel-norm is derived. The solution involves a characterization of all rational functions Ĝ(s) + F(s) that minimize where Ĝ(s) has McMillan degree k, and F(s) is anticavisal. The solution to the latter problem is via results on balanced realizations, all-pass functions and the inertia of matrices, all in terms of the solutions to Lyapunov equations. It is then shown that where σ k+1(G(s)) is the (k+l)st Hankel singular value of G(s) and for one class of optimal Hankel-norm approximations. The method is not computationally demanding and is applied to a 12-state model.

This publication has 13 references indexed in Scilit: