Caspase-Dependent Cleavage of c-Abl Contributes to Apoptosis

Abstract
The nonreceptor tyrosine kinase c-Abl may contribute to the regulation of apoptosis. c-Abl activity is induced in the nucleus upon DNA damage, and its activation is required for execution of the apoptotic program. Recently, activation of nuclear c-Abl during death receptor-induced apoptosis has been reported; however, the mechanism remains largely obscure. Here we show that c-Abl is cleaved by caspases during tumor necrosis factor- and Fas receptor-induced apoptosis. Cleavage at the very C-terminal region of c-Abl occurs mainly in the cytoplasmic compartment and generates a 120-kDa fragment that lacks the nuclear export signal and the actin-binding region but retains the intact kinase domain, the three nuclear localization signals, and the DNA-binding domain. Upon caspase cleavage, the 120-kDa fragment accumulates in the nucleus. Transient-transfection experiments show that cleavage of c-Abl may affect the efficiency of Fas-induced cell death. These data reveal a novel mechanism by which caspases can recruit c-Abl to the nuclear compartment and to the mammalian apoptotic program.