Abstract
Color-magnitude diagrams of globular clusters often exhibit a prominent horizontal branch (HB) and may also show features such as the red giant branch (RGB) bump and the asymptotic giant branch (AGB) bump. Stellar evolution theory predicts that the luminosities of these features will depend on the metallicity and age of the cluster. We calculate theoretical lines of 2 to 12 Gyr constant age RGB-bumps and AGB-bumps in the V(HB-Bump)--[Fe/H] diagram, which shows the brightness difference between the bump and the HB as a function of metallicity. In order to test the predictions, we identify giant branch bumps in new Hubble Space Telescope color-magnitude diagrams for 8 SMC clusters. First, we conclude that the SMC cluster bumps are RGB-bumps. The data for clusters younger than ~6 Gyr are in fair agreement the relative age dependent luminosities of the HB and RGB-bump. The V(HB-Bump)--[Fe/H] data for clusters older then ~6 Gyr demonstrate a less satisfactory agreement with our calculations. We conclude that ~6 Gyr is a lower bound to the age of clusters for which the Galactic globular cluster, age independent V(HB-Bump)--[Fe/H] calibration is valid. Application of the V(HB-bump)--[Fe/H] diagram to stellar population studies is discussed.Comment: Accepted for publication in the Astrophysical Journal, 30 pages, Latex aaspp4.sty, including 7 postscript figure

This publication has 32 references indexed in Scilit: