Dose rate dependence of a PTW diamond detector in the dosimetry of a 6 MV photon beam

Abstract
The dose rate dependence and current/voltage characteristics of a PTW Riga diamond detector in the dosimetry of a 6 MV photon beam have been investigated. Diamond detectors are radiosensitive resistors whose conductivity (i) varies almost in proportion to dose rate and (ii) is almost independent of bias voltage for a constant dose rate. At the recommended bias of +100 V, and also at +200 V, the detector is operating with incomplete charge collection due to the electron-hole recombination time being shorter that the maximum time for an electron to be collected by the anode. As dose rate is varied by changing FSD or depth (changing dose per pulse), detector current and dose rate are related by the expression i alpha DDelta where Delta is approximately 0.98. This manifests itself in an overestimate in percentage depth-dose at a depth of 30 cm of approximately 1% when compared to ionization chamber results. A similar sublinearity is seen when pulse repetition frequency is varied, indicating that the dependence is an on average rather than an instantaneous dose rate. The dose rate dependence is attributed to the reduction in recombination time as dose rate increases.