Synchronization of Motor Units in Human Soleus Muscle During Standing Postural Tasks

Abstract
During standing posture, the soleus muscles acts to control sway in the anteroposterior (AP) direction. The soleus muscles bilaterally share a common function during standing tasks. We sought to determine whether common descending inputs, as evidenced by the synchronization of bilateral motor unit pairs, were employed as a strategy to control this common function. Single motor units were recorded from the soleus muscles in subjects who stood on adjacent force platforms for 5 min with their eyes open or closed. While standing with the eyes open, only 4/39 bilateral motor unit pairs showed significant synchronization. Similarly, only 3/36 motor unit pairs were significantly synchronized during the eyes closed task. The low incidence of synchronization was observed despite a high correlation in the amount of sway in the AP direction between legs in both the eyes open and eyes closed tasks (ρ = 0.80 and ρ = 0.83, respectively). When the extent of synchronization was assessed between pairs of motor units within the same leg with the eyes open, 10/12 pairs were synchronized. Furthermore, when pairs of soleus motor units were recorded both bilaterally and unilaterally during voluntary isometric ankle plantarflexion, only 4/30 bilateral pairs showed significant synchronization, whereas 19/24 unilateral pairs had significant synchronization. In this study, there was little evidence of the existence of synchronization between bilateral soleus motor unit pairs in either postural tasks or voluntary isometric contractions. In cases in which bilateral synchronization was observed, it was considerably weaker than the synchronization of motor units within a single soleus muscle. The results of this study reveal that it is rather uncommon for bilateral soleus motoneurons to receive common descending synaptic inputs, whereas two motoneurons within a single soleus muscle do.